Goodness of fit and variable selection in the fuzzy multiple linear regression

نویسندگان

  • Pierpaolo D'Urso
  • Adriana Santoro
چکیده

In performing a fuzzy multiple linear regression model, important topics are: to measure the fitting quality of the model and to find the “best” set of input variables that explain the variation in the observed system responses. In this paper, by considering an exploratory approach, to express the quality of fit of a fuzzy linear regression model, a coefficient of multiple determination R2 for symmetrical fuzzy variable has been suggested. Furthermore, for overcoming the inconveniences of R2 an adjusted version of R2 (denoted by R 2 ) has been defined. For measuring the fitting performances of the estimated model, a fuzzy extension of another goodness of fit measure, the so-called Mallows index (Cp), has been considered. All the proposed fitting measures have been utilized for selecting suitably the input variables of a fuzzy linear regression model. To this purpose, some variable selection procedures based on R2, R 2 and Cp have been suitably extended in a fuzzy framework. To explain the efficacy of the goodness of fit measures and the variable selection criteria some examples are also shown. © 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FUZZY LOGISTIC REGRESSION BASED ON LEAST SQUARE APPROACH AND TRAPEZOIDAL MEMBERSHIP FUNCTION

Logistic regression is a non-linear modification of the linearregression. The purpose of the logistic regression analysis is tomeasure the effects of multiple explanatory variables which can becontinuous and response variable is categorical. In real life there aresituations which we deal with information that is vague innature and there are cases that are not explainedprecisely. In this regard,...

متن کامل

A NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION

Logistic regression analysis is used to model categorical dependent variable. It is usually used in social sciences and clinical research. Human thoughts and disease diagnosis in clinical research contain vagueness. This situation leads researchers to combine fuzzy set and statistical theories. Fuzzy logistic regression analysis is one of the outcomes of this combination and it is used in situa...

متن کامل

FUZZY LINEAR REGRESSION BASED ON LEAST ABSOLUTES DEVIATIONS

This study is an investigation of fuzzy linear regression model for crisp/fuzzy input and fuzzy output data. A least absolutes deviations approach to construct such a model is developed by introducing and applying a new metric on the space of fuzzy numbers. The proposed approach, which can deal with both symmetric and non-symmetric fuzzy observations, is compared with several existing models by...

متن کامل

Fuzzy Robust Regression Analysis with Fuzzy Response Variable and Fuzzy Parameters Based on the Ranking of Fuzzy Sets

‎Robust regression is an appropriate alternative for ordinal regression when outliers exist in a given data set‎. ‎If we have fuzzy observations‎, ‎using ordinal regression methods can't model them; In this case‎, ‎using fuzzy regression is a good method‎. ‎When observations are fuzzy and there are outliers in the data sets‎, ‎using robust fuzzy regression methods are appropriate alternatives‎....

متن کامل

Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable

The traditional regression analysis is usually applied to homogeneous observations. However, there are several real situations where the observations are not homogeneous. In these cases, by utilizing the traditional regression, we have a loss of performance in fitting terms. Then, for improving the goodness of fit, it is more suitable to apply the so-called clusterwise regression analysis. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fuzzy Sets and Systems

دوره 157  شماره 

صفحات  -

تاریخ انتشار 2006